Section 5.3: Decision Trees

March 21, 2017

Abstract

Decision trees are defined, and some examples given (almost every tree will be binary in what follows). Binary search trees store data conveniently for searching later. Some bounds on worst case scenarios for searching and sorting are obtained.

1 Decision Tree Definition and Terminology

Definition: a decision tree is a tree in which

- internal nodes represent actions,
- arcs represent outcomes of an action, and
- leaves represent final outcomes.

2 Examples of decision trees in action

A decision tree for trees! For example, the Identification of Common Trees of Iowa:
http://www.extension.iastate.edu/forestry/iowa_trees/key/key.html

Here’s one from a recent project, that could be improved: Common Trees of Campbell County:
This is a model of the Fibonacci rabbit problem, where no two successive heads means that H represents an immature rabbit pair, and it must mature first (turn into a T). A T produces both an H – immature pair – and continues. Internal nodes hence represent different states of pairs in preparation for development, and arcs represent the different outcomes (or processes) – maturation, reproduction, or persistence.
3 Lower Bounds on Searching

Table 1: Adding one more node to a full binary tree (the most efficient way of storing those nodes) bumps the depth up 1, so that if there are 2^d nodes, the depth is (at least) d. Hence, in the case of powers of 2, $d = \log m$.

<table>
<thead>
<tr>
<th>Depth d</th>
<th>Nodes m</th>
<th>Nodes by depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1 = 2^1 - 1$</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$3 = 2^2 - 1$</td>
<td>1+2</td>
</tr>
<tr>
<td>2</td>
<td>$7 = 2^3 - 1$</td>
<td>1+2+4</td>
</tr>
<tr>
<td>3</td>
<td>$15 = 2^4 - 1$</td>
<td>1+2+4+8</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

In particular, here are some properties about binary trees:

a. Any binary tree of depth d has at most $m \leq 2^{d+1} - 1$ nodes. (Proof: look at the full binary tree, Table (1), as it has the most nodes per depth.)

b. Any binary tree with m nodes has depth $d \geq \lfloor \log_2 m \rfloor$, and $\lfloor x \rfloor$ is the floor function (meaning the greatest integer less than or equal to x). Again, the proof can be motivated simply by studying the full binary tree situation. However, a more formal proof is by contradiction and interesting (p. 455):

Proof: (Any binary tree with m nodes has depth $d \geq \lfloor \log_2 (m) \rfloor$.)

- Assume $d < \lfloor \log_2 (m) \rfloor$: then $d \leq \lfloor \log_2 (m) \rfloor - 1$.
- From property a above, $m \leq 2^{d+1} - 1 \leq 2^{\lfloor \log_2 (m) \rfloor + 1} - 1 \leq 2^{\log_2 (m)} - 1 = m - 1$.

Therefore, since $m \leq m - 1$ is a contradiction, $d \geq \lfloor \log_2 (m) \rfloor$.

These facts lead to the following

Theorem (on the lower bound for searching): Any algorithm that solves the search problem for an m-element list by comparing the target element x to the list items must do at least $\lfloor \log_2 (m) \rfloor + 1$ comparisons in the worst case.

Since a general searching algorithm must offer the possibility of comparing x to each element of the list, one must have at least m comparisons (hence m internal nodes in the search tree).

The “+1” comes about because a decision tree representing the search problem has leaves which report the outcome of the search: hence its depth – which actually reports the number of comparisons in the
worst case – is 1 more than the depth of a tree containing only the internal nodes (representing the comparisons themselves). So the result we’ve used \(d \geq \lfloor \log_2(m) \rfloor\) refers to the comparison tree, and we tack on 1 to give the actual decision tree.

For example, at depth 0 we make the first comparison: the depth of the last internal node is actually 1 less than the number of comparisons we make, which is given by the depth of the tree (including its leaves).

If, in its worst case, an algorithm does at most this lower bound on worst case behavior is an optimal algorithm in its worst-case behavior. Binary search is optimal (as seen, for example, in Practice 24).

Example: Practice #24, p. 454

4 Binary Search Tree

The Binary search algorithm required a sorted list; if your data is unsorted (it may be changing dynamically in time, if you’re updating a database of customers, for example), you can populate a tree which approximates a sorted list, and then use a modified search algorithm (binary tree search) to search the list. A binary search tree is constructed as follows:

- The first item in the list is the root;
- Successive items are inserted by comparing them to existing nodes, from the root node: if less than a node, descend to the left child and iterate; if greater than, descend to the right child.
- If, in descending, there is no child, you create a new node.

For example,

![Binary Search Tree Diagram](image)

Figure 3: Figure 5.55: tree obtained from entering 9, 12, 10, 5, 8, 2, 14, in that order

Example: Practice #25, p. 457.

The binary tree search algorithm works in the same way as you’d introduce a new node, only the algorithm terminates if
• the element is equal to a node, or
• the element is unequal to a leaf of the binary search tree.

In this case the binary search tree serves as the trunk of the decision
tree for the binary tree search algorithm (minus the leaves).

Example: Exercise #9, p. 459.

What’s the worst way to enter the data into a binary search tree, if one
is seeking to create a balanced tree?

5 Sorting

Examine Figure 5.56, p. 457:

Figure 4: Figure 5.56, p. 457: Sorting a list (binary tree, provided
distinct list elements)

In this case, we’re sorting a three-element list using a decision tree.
The author says this algorithm is “not particularly astute”: why?

Assuming no equal elements in the list, then this is indeed a binary
(rather than ternary tree, with = included). In this case, we can also
get a lower bound on sorting a list with \(n \) elements:

• There are \(n! \) possible sorted lists, and there must be at least that
 many leaves \(p \) (\(p \geq n! \)). (In Figure 5.56, there are eight leaves,
 but only 6=3! different sorted lists).

• A worst-case final outcome in the decision tree is given by the
 depth \(d \) of the tree (with the number of comparisons being one
 fewer than that, \(d - 1 \)).

• Since the tree is binary, \(p \leq 2^d \) (the maximum number of leaves
 possible at depth \(d \)).
• Taking logs, we get $\log_2(p) \leq d$, or $d \geq \lceil \log_2(p) \rceil$, where $\lceil x \rceil$ is the ceiling function, which yields the smallest integer greater than or equal to x.

• Hence, $d \geq \lceil \log_2(n!) \rceil$.

This is the Theorem on the lower bound for sorting: that you have to go to at least a depth of $\lceil \log_2(n!) \rceil$ in the worst case. Exercise #23, p. 462, shows that this lower bound ($\lceil \log_2(n!) \rceil$) is on the order of $n \log_2(n)$ (as we discovered for mergesort).

It’s easy to show that $\log_2(n!) \leq n \log_2(n)$:

$$\log_2(n!) = \sum_{i=1}^{n} \log_2(i) \leq \sum_{i=1}^{n} \log_2(n) = n \log_2(n)$$

It’s not quite so easy to show that $\exists c > 0$ such that $cn \log_2(n) \leq \log_2(n!)$.

$$\log(n!) = \log[n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1]$$

$$= \log(n) + \log(n-1) + \ldots + \log(2) \cdot \log(1)$$

$$\geq \log(n) + \log(n-1) + \ldots + \log(\text{ceiling}(\frac{n}{2}))$$

$$\geq \log(\text{ceiling}(\frac{n}{2})) + \log(\text{ceiling}(\frac{n}{4})) + \ldots + \log(\text{ceiling}(\frac{n}{2}))$$

$$\geq (\text{ceiling}(\frac{n}{2})) \log(\text{ceiling}(\frac{n}{2}))$$

$$\geq \frac{n}{2} \log(\frac{n}{2}) = \frac{n}{2} (\log(n) - \log(2))$$

$$\geq \frac{n}{2} (\log(n) - 1) = \frac{n}{4} \log(n) + \frac{n}{4} \log(n) - \frac{n}{2} = \frac{n}{4} \log(n) + \frac{n}{4} (\log(n) - 2)$$

$$\geq \frac{n}{4} \log(n) \text{ (when } n \geq 4)$$

Example: Exercise #15, p. 460 (using a ternary tree)

The solution boils down to this: how many comparisons can one cram into a ternary tree of a given depth? What if there were nine coins?