X is the lifetime for a randomly selected bulb where \(X \sim \text{Normal}(\mu = 5100, \sigma = 200) \).

\[
\begin{align*}
P(X > 5000) &= P\left(\frac{X - 5100}{200} > \frac{5000 - 5100}{200}\right) = P(Z > -0.5) \\
&= P(-0.5 < Z < 0) + P(Z > 0) = 0.1915 + 0.5 = 0.6915
\end{align*}
\]

Working backwards, we want to find \(x \) such that \(P(X > x) = 0.9800 \).

So in the standard normal picture, what value of \(z \) gives \(P(Z > z) = 0.98 \)? Look for 0.4800 in the body of Table 3. Use the closest value which is 0.4798. This corresponds to the little \(z \) value of 2.05, but recall in our picture, we are below 0 (negative numbers), so we add a negative sign. Thus, \(P(Z > -2.05) = 0.98 \). Notice we are looking for \(z_{0.98} = -z_{0.02} \).

Now, we “untransform” our -2.05 to find the value of \(x \) we are seeking.

Since \(z = \frac{x - 5100}{200} \) we can put in -2.05 for \(z \) and solve for \(x \).

\[
-2.05 = \frac{x - 5100}{200}
\]

which implies that \(200(-2.05) + 5100 = x \) and hence \(x = 4690 \).

We would advertise that the bulbs last \(4,690 \text{ hours} \).
8.42 a \(P(X > 12000) = P\left(\frac{X - \mu}{\sigma} > \frac{12000 - 10000}{2400} \right) = P(Z > .83) = .5 - P(0 < Z < .83) = .5 - .2967 = .2033 \)

\[\text{Standard Normal Distribution} \]

\[
\begin{array}{c}
\text{f(x)} \\
0.0 \\
0.1 \\
0.2 \\
0.3 \\
0.4 \\
\end{array}
\]

\[-4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \]

b \(P(X < 9000) = P\left(\frac{X - \mu}{\sigma} < \frac{9000 - 10000}{2400} \right) = P(Z < -.42) = .5 - P(0 < Z < .42) = .5 - .1628 = .3372 \)

\[\text{Standard Normal Distribution} \]

\[
\begin{array}{c}
\text{f(x)} \\
0.0 \\
0.1 \\
0.2 \\
0.3 \\
0.4 \\
\end{array}
\]

\[-4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \]
8.43 \(P(0 < Z < z_{.001}) = .5 - .001 = .4990; \ z_{.001} = 3.08 \). Then, \(z_{.001} = \frac{x - \mu}{\sigma}; \ 3.08 = \frac{x - 10000}{2400} \); \(x = 17392 \).

\[\text{Standard Normal Distribution} \]

8.44 a \(P(X > 70) = P\left(\frac{X - \mu}{\sigma} > \frac{70 - 65}{4}\right) = P(Z > 1.25) = .5 - P(0 < Z < 1.25) \)

\[= .5 - .3944 = .1056 \]

b \(P(X < 60) = P\left(\frac{X - \mu}{\sigma} < \frac{60 - 65}{4}\right) = P(Z < -1.25) = .5 - P(0 < Z < 1.25) \)

\[= .5 - .3944 = .1056 \]

c \(P(55 < X < 70) = P\left(\frac{55 - 65}{4} < \frac{X - \mu}{\sigma} < \frac{70 - 65}{4}\right) = P(-2.50 < Z < 1.25) \)

\[= P(0 < Z < 2.50) + P(0 < Z < 1.25) = .4938 + .3944 = .8882 \]

8.45 a \(P(X < 70000) = P\left(\frac{X - \mu}{\sigma} < \frac{70000 - 82000}{6400}\right) = P(Z < -1.88) = .5 - P(0 < Z < 1.88) \)

\[= .5 - .4699 = .0301 \]

b \(P(X > 100000) = P\left(\frac{X - \mu}{\sigma} > \frac{100000 - 82000}{6400}\right) = P(Z > 2.81) = .5 - P(0 < Z < 2.81) \)

\[= .5 - .4975 = .0025 \]

8.48 \(P(X > 8) = P\left(\frac{X - \mu}{\sigma} > \frac{8 - 7.2}{.667}\right) = P(Z > 1.2) = .5 - P(0 < Z < 1.2) = .5 - .3849 = .1151 \)

8.49 \(P(0 < Z < z_{.25}) = .5 - .25 = .2500; \ z_{.25} = .67; \)

\[z_{.25} = \frac{x - \mu}{\sigma}; \ .67 = \frac{x - 7.2}{.67}; \ x = 7.65 \text{ hours} \]
8.54
\(a \ P(X > 30) = P\left(\frac{X - \mu}{\sigma} > \frac{30 - 27}{7} \right) = P(Z > .43) = .5 - P(0 < Z < .43) \)
\[= .5 - .1664 = .3336 \]
\(b \ P(X > 40) = P\left(\frac{X - \mu}{\sigma} > \frac{40 - 27}{7} \right) = P(Z > 1.86) = .5 - P(0 < Z < 1.86) \)
\[= .5 - .4686 = .0314 \]
\(c \ P(X < 15) = P\left(\frac{X - \mu}{\sigma} < \frac{15 - 27}{7} \right) = P(Z < -1.71) = .5 - P(0 < Z < 1.71) \)
\[= .5 - .4564 = .0436 \]
\(d \ P(0 < Z < z_{.20}) = .5 - .20 = .3000; \ z_{.20} = .84 \)
\[z_{.20} = \frac{x - \mu}{\sigma}; \ .84 = \frac{x - 27}{7}; \ x = 32.88 \]

8.56
\(a \ P(X < 10) = P\left(\frac{X - \mu}{\sigma} < \frac{10 - 16.40}{2.75} \right) = P(Z < -2.33) = .5 - P(0 < Z < 2.33) \)
\[= .5 - .4901 = .0099 \]
\(b \ P(-z_{.10} < Z < 0) = .5 - .10 = .4000; \ -z_{.10} = -1.28 \)
\[-z_{.10} = \frac{x - \mu}{\sigma}; \ -1.28 = \frac{x - 16.40}{2.75}; \ x = 12.88 \]