• 3-way light switch:

- want either switch to be able to turn light ON/OFF independent of position of other switch

\[
X = 1, \text{ light ON}, \quad A = 1, \text{ switch UP}, \quad B = 1, \text{ UP} \\
0, \text{ OFF} \quad 0, \text{ switch DOWN} \quad 0, \text{ DOWN}
\]

- assume when first installed \(X = 0, A = 0, \) and \(B = 0 \)

- want:

\[
\begin{align*}
A = 0 \text{ and } B = 0 & \quad \Rightarrow \\
A = 0 \rightarrow 1 \text{ and } B = 0 & \quad \Rightarrow \\
A = 1 \text{ and } B = 0 \rightarrow 1 & \quad \Rightarrow \\
A = 1 \rightarrow 0 \text{ and } B = 1 & \quad \Rightarrow \\
A = 0 \text{ and } B = 1 \rightarrow 0 & \quad \Rightarrow \\
\end{align*}
\]

\[
\begin{array}{c|c|c|c}
A & B & X \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

\(\Rightarrow \text{ circuit (6)} \)

- used double pole switches to realize (6) : \(X = A \cdot B + A \cdot \overline{B} \)

- (6) termed exclusive-OR (XOR) since \(A \) or \(B = 1 \) but not both

- (7) termed inclusive-OR (or just OR) since \(A \) or \(B \) or both = 1

• Seat-belt buzzer:

- want:

\[
\begin{align*}
I = \begin{cases}
1, \text{ ignition ON} , \\
0, \text{ OFF}
\end{cases} \quad S = \begin{cases}
1, \text{ fastened} , \\
0, \text{ unfastened}
\end{cases} \quad B = \begin{cases}
1, \text{ sound} , \\
0, \text{ quiet}
\end{cases}
\end{align*}
\]
\[\begin{array}{c|c|c}
I & S & B \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array} \Rightarrow \text{circuit } 2 \Rightarrow B = I \cdot \overline{S} \Rightarrow \text{seat-belt needs to be n.c. switch} \]

- physically, S best as n.o., but want it to be n.c. in control circuit
 \[\Rightarrow \text{can use relay:} \]

- both B and relay coil are loads
- when S actuated, current flows through relay coil, which becomes a magnet that actuates relay contact

- **Relays:**
 - up to now, all inputs have been mechanical switches that directly made or broke the circuit controlling the load
 - relays can be used to indirectly control higher power circuit:

\[\text{120 V AC} \]

\[\text{12 V DC} \]

\[\text{high-power circuit} \]

\[\text{low-power control circuit} \]
- relays can be normally open (n.o.) or normally closed (n.c.)
- use of relays eliminates need for complex multiple pole switches and wiring

- **Logic Gates:** (see handout)
 - in seat-belt control circuit, relay used to convert n.o. mechanical switch to n.c. switch
 ⇒ performing Logical NOT ⇒ inverting signal ⇒ inverter
 - **NOT gate:**
 ![Not Gate Diagram](image)

 - **NOR gate:** when two (or more) inputs connected in parallel to single relay of NOT gate, get NOR gate
 ![NOR Gate Diagram](image)

 - if n.o. relay contact used in NOR gate ⇒ **OR gate** = A
 ![OR Gate Diagram](image)

 - but, unlike OR gate, NOR gate (and NAND gate) are universal gates
 ⇒ any Boolean logic circuit can be realized using just NOR gates (or just NAND gates)
- NOT gate via NOR gate:

\[A \quad B \quad X \Rightarrow \begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \]

\[\Rightarrow A \quad \overline{X} = \overline{A} \]

- OR gate via NOR gates:

\[A \quad A + B \quad X = A + B \quad \iff \quad B \quad 0 \]

- AND gate via NOR gates: not immediately obvious how to construct

\[\Rightarrow \text{use Theorems of Boolean Algebra} \]

- Theorems of Boolean Algebra (see handout)
 - used to manipulate Boolean expressions
 - developed by George Boole in 1850s (Laws of Thought)
 - in 1938, Claude Shannon saw one-to-one correspondence between Boolean expressions and switching circuits
 \[\Rightarrow \text{Boolean algebra can be used to simplify logic control circuits} \]
 - AND gate via NOR gates + Boolean algebra:
 Want: \[X = A \cdot B \]
 \[= \overline{A \cdot B} \quad \text{(by Negation Th.)} \]

 \[\text{Let } A' = \overline{A} \text{ and } B' = \overline{B} \]
 \[X = \overline{A' \cdot B'} \]
 \[= \overline{A' + B'} \quad \text{(by DeMorgan 2 — left side of DeMorgan 2 is NOR)} \]
 \[= A + B \]
Theorems also give NOT and OR gates via NOR gates:

NOT: \(X = \overline{A} \)

\[
\begin{align*}
X &= \overline{A} \cdot 1 \quad \text{(by Char. 2)} \\
&= \overline{A} \cdot 0 \quad \text{(1=0 & 0=1)} \\
&= \overline{A} + 0 \quad \text{(by DeMorgan 2)}
\end{align*}
\]

OR: \(X = A + B \)

\[
\begin{align*}
X &= \overline{A} + \overline{B} \quad \text{(by Neg.)} \\
&= \overline{A} \cdot \overline{B} \quad \text{(by DeMorgan 1)} \\
&= \overline{A} \cdot \overline{B} \cdot 1 \quad \text{(by Char. 2)} \\
&= \overline{A} \cdot \overline{B} \cdot 0 \quad \text{(1=0)} \\
&= \overline{A} \cdot \overline{B} + 0 \quad \text{(by DeMorgan 2)} \\
&= (A + B) + 0 \quad \text{(by DeMorgan 2)}
\end{align*}
\]

- **Transistor Logic:**
 - Why are 3 NOR gates used instead of 1 AND gate?
 - NOR gate easy to make using transistor
 - transistors used instead of relays in all control applications except to switch high power circuits

- for control system design, can think in terms of relays
• **Multi-input gates:** logic gates can have more than two inputs

\[X = A + B + \ldots \]
\[\text{can all be realized using multi-input NOR or NAND gates} \]

• **Input negation:**

\[A \quad \Rightarrow \quad A \quad \Leftrightarrow \quad X = A + B \]

• **Nesting:** when output from gate used as input to next, equivalent to parenthesis in Boolean expression (AND higher precedence than OR)

• **Logic gate network →** Boolean expression:

\[X = (A \cdot B + C) + C \]

\[X = [(A \cdot \bar{B}) + B + (B + C)] \cdot \bar{D} \]

\[= (A \cdot \bar{B} + B + B + C) \cdot \bar{D} \]
Theorems and Laws of Boolean Algebra

CHARACTERISTIC THEOREMS

1. \(X \cdot 0 = 0 \)
2. \(X \cdot 1 = X \)
3. \(X + 0 = X \)
4. \(X + 1 = 1 \)

NEGATION THEOREM

\(\overline{X} = X \)

NEGATION THEOREM

\(\overline{X} = X \)

INCLUSION THEOREMS

1. \(X \cdot \overline{X} = 0 \)
2. \(X + \overline{X} = 1 \)

COMmutative LAW

1. \(X + Y = Y + X \)
2. \(X \cdot Y = Y \cdot X \)

ABSORPTIVE LAWS

1. \(X + XY = X \)
2. \(X(X + Y) = X \)

ASSOCIATIVE LAW

1. \(X + Y + Z = X + (Y + Z) \)
2. \(X \cdot Y \cdot Z = X \cdot (Y \cdot Z) \)

REFLECTIVE THEOREMS

1. \(X + \overline{XY} = X + Y \)
2. \(X(\overline{X} + Y) = XY \)
3. \(XY + \overline{XYZ} = XY + YZ \)

DISTRIBUTIVE LAW

1. \(X \cdot Y + X \cdot Z = X(Y + Z) \)
2. \((X + Y)(W + Z) = XW + XZ + YW + YZ \)

CONSISTENCY THEOREM

1. \(XY + X\overline{Y} = X \)
2. \((X + Y)(X + \overline{Y}) = X \)

IDEMPOTENT THEOREMS

1. \(X \cdot X = X \)
2. \(X + X = X \)

DEMORGAN’S LAWS

1. \(X \overline{Y} = X + \overline{Y} \)
2. \(\overline{X + Y} = \overline{X} \cdot \overline{Y} \)
Logic: \land A B \lor \downarrow \leftrightarrow \bar{B} \leftarrow \bar{A} \rightarrow \uparrow

Boolean: \bullet \oplus $+$ \odot

<table>
<thead>
<tr>
<th>Name</th>
<th>AND</th>
<th>XOR</th>
<th>OR</th>
<th>NOR</th>
<th>XNOR</th>
<th>NOT</th>
<th>NOT</th>
<th>NAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

short circuit

$A \cdot B$, $\bar{A} \cdot B$, A, \bar{A}, $\bar{A} \cdot B$, $A + B$, $\bar{A} \cdot B + A \cdot B$, $A + B$, \bar{A}, $\bar{A} + B$, $\bar{A} + B$, $A \cdot B$, no control
Digital Logic Gates and Associated Logical Operations for Binary Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Logical Operation</th>
<th>Truth Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td></td>
<td>(Z = A \cdot B)</td>
<td>(\begin{array}{ccc} A & B & Z \ 0 & 0 & 0 \ 0 & 1 & 0 \ 1 & 0 & 0 \ 1 & 1 & 1 \end{array})</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>(Z = A + B)</td>
<td>(\begin{array}{ccc} A & B & Z \ 0 & 0 & 0 \ 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 1 \end{array})</td>
</tr>
<tr>
<td>NOT</td>
<td></td>
<td>(Z = \overline{A})</td>
<td>(\begin{array}{c} A \mid Z \ 0 & 1 \ 1 & 0 \end{array})</td>
</tr>
<tr>
<td>NAND</td>
<td></td>
<td>(Z = A \cdot \overline{B})</td>
<td>(\begin{array}{ccc} A & B & Z \ 0 & 0 & 1 \ 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array})</td>
</tr>
<tr>
<td>NOR</td>
<td></td>
<td>(Z = \overline{(A + B)})</td>
<td>(\begin{array}{ccc} A & B & Z \ 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \ 1 & 1 & 0 \end{array})</td>
</tr>
<tr>
<td>XOR</td>
<td></td>
<td>(Z = A \oplus B)</td>
<td>(\begin{array}{ccc} A & B & Z \ 0 & 0 & 0 \ 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array})</td>
</tr>
<tr>
<td>XNOR</td>
<td></td>
<td>(Z = A \oplus B)</td>
<td>(\begin{array}{ccc} A & B & Z \ 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \ 1 & 1 & 1 \end{array})</td>
</tr>
</tbody>
</table>
- **Simplifying Boolean expression** \(\Leftrightarrow \) **reducing number of logic gates**

\[
X = (A \cdot B + C) + C
\]

\[
= (A \cdot B \cdot C) + C \quad \text{(by DeMorgan 2)}
\]

\[
= A \cdot B + C \quad \text{(by Reflective 1)}
\]

\[\downarrow \text{from 3 to 2 gates}\]

\[
X = (A \cdot B + B + B + C) \cdot D
\]

\[
= (A \cdot B + B + C) \cdot D \quad \text{(by Idempotent 2)}
\]

\[
= (A + B + C) \cdot D \quad \text{(by Reflective 1)}
\]

\[\downarrow \text{from 4 to 2 }\]

- **Canonical Sum-of-Products Form**
 - Used to realize any logic control circuit from its truth table

1. For each circuit, construct its truth table to relate all possible inputs to desired output of circuit:

<table>
<thead>
<tr>
<th>Row</th>
<th>A</th>
<th>B</th>
<th>X</th>
<th>desired output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

2. For each row where \(X = 1\), AND together inputs, where 0 inputs are NOTed

- row 0: \(X \neq 1\)
- row 1:
 - \(A \cdot \bar{B} \cdot B\)
- row 2:
 - \(A \cdot \bar{B} \cdot \bar{B} \cdot B\)
- row 3:
 - \(A \cdot \bar{B} \cdot B\)
3. OR together AND gates from step 2
 \[X = \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B \]

4. Use Theorems of Boolean Algebra to simplify if possible
 \[= \overline{A} \cdot B + A \cdot (\overline{B} + B) \quad \text{(by Distrib. 1)} \]
 \[= \overline{A} \cdot B + A \cdot (1) \quad \text{(by Inclusion 2)} \]
 \[= A \cdot B + A \quad \text{(by Char. 2)} \]
 \[= B + A \quad \text{(by Reflect. 1)} \]
 \[= A + B \Rightarrow \text{OR} \quad \text{(by Commut. 1)} \]

- termed “Sum-of-Products” since OR-ing together (summing) AND-ed inputs (products)

- Example: XOR

 \[
 \begin{array}{c|cc}
 A & B & X \\
 \hline
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
 \end{array}
 \]

 \[\Rightarrow \quad X = \overline{A} \cdot B + A \cdot \overline{B}, \quad \text{can’t simplify} \]

- Example: Seat belt and Door-Open Buzzer

 \[I = \begin{cases}
 1, \text{ignition ON} \\
 0, \text{OFF}
 \end{cases}, \quad S = \begin{cases}
 1, \text{seat belt fastened} \\
 0, \text{unfastened}
 \end{cases} \]

 \[D = \begin{cases}
 1, \text{door closed} \\
 0, \text{door open}
 \end{cases}, \quad B = \begin{cases}
 1, \text{sound} \\
 0, \text{quiet}
 \end{cases} \]
\[
B = I \cdot S \cdot D + I \cdot S \cdot D + I \cdot S \cdot D
\]

\[
= I \cdot (S \cdot D + S \cdot D + S \cdot D) \quad \text{(by Distrib. 1)}
\]

\[
= I \cdot (S + S \cdot D) \quad \text{(by Consist. 1)}
\]

\[
= I \cdot (S + D) \quad \text{(by Reflect. 1)}
\]

<table>
<thead>
<tr>
<th>I</th>
<th>S</th>
<th>D</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Example: Automatic Door and Lock

\[D = \begin{cases} 1, \text{door opening} \\ 0, \text{door closing} \end{cases} \quad \text{O = } \begin{cases} 1, \text{door not shut} \\ 0, \text{door shut} \end{cases} \]

\[M = 1, \text{someone on mat} \quad \text{L = } \begin{cases} 1, \text{unlocked} \\ 0, \text{locked} \end{cases} \]

\[\text{Operation: Want door to open if someone on mat and door unlocked.} \]

\[\text{If locked, want it to stay open or shut independent of mat} \]